THE STRUCTURES OF NEW ISOTETRACENONE ANTIBIOTICS, KERRIAMYCINS A. B AND C

Yoichi Hayakawa, Kazuo Furihata, Haruo Seto and Noboru Otake* Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan 113

Summary: Based on 1 H and 13 C NMR spectral analysis, the structures of kerriamycins A, B and C, new isotetracenone antibiotics, have been elucidated as shown in Fig. 1. Kerriamycin A contains a novel sugar, kerriose.

Kerriamycins A, B and C are new antitumor antibiotics produced by <u>Streptomyces violaceolatus</u> A32, which belong to the isotetracenone antibiotic group.¹⁾ The kerriamycins inhibit the growth of Gram-positive bacteria and prolong the survival periods of mice bearing Ehrlich ascites carcinoma.

Hydrolysis of each kerriamycin with 2H HCl for 2 hours at room temperature gave aquayamycin^{2,3)} as an aglycone part, which was extracted with ethyl acetate and identified by direct comparison with an authentic sample. Aquayamycin $(C_{25}H_{26}O_{10})$, an antitumor antibiotic, contains a modified benz[a]anthraquinone chromophore which is characteristic to the isotetracenone antibiotics.

The 400 MHz ¹H NMR spectrum⁴) of kerriamycin A (<u>1</u>) $[C_{43}H_{54}O_{17}; FAB-MS, <u>m/z</u> 865 (M+Na)⁺] in CDCl₃ showed the following signals; <math>\delta$ 12.31 (s. 8-OH), 7.91 (d. J=7.9Hz, 10-H), 7.67 (d, J=7.9, 11-H), 6.89 (d, J=9.9, 6-H), 6.41 (d, J=9.9, 5-H), 4.88 (d, J=11.0, 1'-H), 4.35 (br.s, 4'-OH), 3.72 (ddd, J=10.0, 8.2, 4.0, 3'-H). 3.50 (dq. J=8.6, 6.1, 5'-H), 3.18 (dd. J=8.6, 8.2, 4'-H), 2.78 (dd. J=12.7, 2.8, 2-Ha), 2.51 (d, J=12.7, 2-Hb), 2.46 (dd. J=13.0, 4.0, 2'-Heq), 2.17 (dd. J=14.8, 2.8, 4-Ha), 1.85 (d, J=14.8, 4-Hb), 1.43 (3H. d. J=6.1, 6'-H), 1.42 (ddd, J=13.0, 11.0, 10.0, 2'-Hax) and 1.24 (3H, s, 3-CH₃) ascribed to the aquayamycin molety (<u>1</u>), δ 5.04 (br.s, 1-H), 4.13 (q, J=6.8, 5-H), 3.60 (br.s, 4-H), 2.15 (m, 2-Ha), 2.01 (m, 3-Ha), 1.99 (m, 3-Hb), 1.58 (m, 2-Hb) and 1.21 (3H, d, J=6.8, 6-H) due to sugar A (<u>II</u>), δ 5.39 (br.s, 1-H), 3.67 (q, J=6.8, 5-H), 3.44 (br.s, 4-H), 1.90 (2H, m, 2-H), 1.89 (m, 3-Ha), 1.72 (m, 3-Hb) and 0.58 (3H, d, J=6.8, 6-H) due to sugar B (<u>III</u>), 4.67 (dd, J=9.1, 2.5, 1-H), 3.81 (d, J=9.7, 4-H), 3.44 (br.s, 4-OH), 3.28 (dq, J=9.7, 5.8, 5-H), 2.92 (dd, J=14.0, 2.5, 2-Heq), 2.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=14.0, 2.5, 2-Heq), 2.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=14.0, 2.61 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=9.7, 4-H), 3.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=9.7, 4-H), 3.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=9.7, 4-H), 3.81 (dd, J=14.0, 2.5, 2-Heq), 2.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=9.7, 4-H), 3.81 (dd, J=14.0, 2.5, 2-Heq), 2.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=14.0, 2.5, 2-Heq), 2.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=14.0, 2.5, 2-Heq), 2.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=14.0, 9.1, 2-Hax) and 1.46 (3H, d, J=5.8, 1-H), 3.81 (dd, J=14.0, 2.5, 2-Hax) and 1.

3475

6-H) due to sugar C (\underline{IV}), which were assigned by 2-D COSY spectral analysis.

The components <u>II</u> and <u>III</u> were identified as rhodinose⁵) (2,3,6-trideoxy-<u>threo</u>-hexopyranose) by the above spectral data. The component <u>IV</u> was elucidated to be a 2,6-dideoxyhexopyranose with a quaternary carbon at C-3 by ¹H NMR spectral analysis. The chemical shifts of 2-Hax, 2-Heq and 4-H and the ketone carbonyl carbon observed at δ 201.1 suggest that <u>IV</u> is a 3-ulose. In addition, the long range coupling (1.5 Hz) was observed between 2-Hax and 4-H, which are in a 1,3-diaxial-2-keto system.⁵) From these analysis, the structure of <u>IV</u> was established to be 2,6-dideoxy-<u>erythro</u>-hexopyran-3-ulose. As far as we know, <u>IV</u> is a novel sugar found for the first time from a natural source and thus, the name kerriose was given.

Based on the coupling constants of the anomeric protons, the anomeric configurations of the sugar moieties were established to be α for each rhodinose and β for kerriose.

СНз Ô OH $R^1 \cap$ СН₃ sugar A R² R¹ OH n CH₃ HO Kerriamycin A СНз OH OH CH₃ HO Kerriamycin B CH3 OH HO Н Kerriamycin C CH_3 sugar B sugar C

3476

Fig. 1

The NOE observed between 1-H of <u>II</u> and 3'-H of <u>I</u> and between 1-H of <u>IV</u> and 4-H of <u>II</u> indicate that the glycosidic linkages between sugar A, C and the aquayamycin moiety are as shown in Fig. 1. Irradiation of H-1 (δ 5.39) of sugar B caused the NOE enhancement on the carbon⁷) at δ 80.2 assigned to C-12b,⁹) thereby showing that the remaining rhodinose (<u>III</u>) is glycosidically connected to C-12b of the aquayamycin part. From these analysis, the structure of <u>1</u> was determined to be as shown in Fig. 1.

The ¹H and ¹³C NMR spectra of kerriamycin B ($\underline{2}$)⁴) [C₄₃H₅₆O₁₇; FAB-MS, <u>m/z</u> 867 (M+Na)⁺] in CD₃OD showed a close resemblance to those of <u>1</u> except for signals relating to sugar C. The ¹H NMR assignments of sugar C in <u>2</u> are as follows; δ 4.57 (dd, J=9.6, 1.8 Hz, 1-H), 3.49 (ddd, J=12.0, 8.9, 5.3, 3-H), 3.22 (dq, 9.4, 5.9, 5-H), 2.90 (dd, J=9.4, 8.9, 4-H), 2.20 (ddd, J=12.2, 5.3, 1.8, 2-Heq), 1.55 (ddd, J=12.2, 12.0, 9.6, 2-Hax) and 1.26 (3H, d, J=5.9, H-6). By these spectral data, sugar C in <u>2</u> was identified as olivose⁸) (2,6-dideoxy-<u>arabino</u>-hexopyranose) with the β -configuration, indicating that kerriamycin B

	A	В	С	·	A	В	С
	(CDC1 ₃)	(CD ₃ 0D)	(CD ₃ 0D)	Sugar A			
	•	2	Ū	1	96.9	95.2	95.1
1	204.9	204.0	206.1	2	25.1	25.7	25.7
2	53.9	54.8	53.2	3	24.5	25.5	25.5
3	75.3	77.0	77.5*	4	76.4	77.5	77.5
3-CH3	29.9	30.1	30.3	5	67.1	67.8	67.7
4	43.3	44.5	44.8	6	17.1	17.5	17.5
4a	81.6	82.6	81.9	Sugar B			
5	144.5	146.0	145.8	1	94.4	95.4	
6	116.4	117.6	117.9	2	23.1	24.3	
ба	136.9	138.2	138.7	3	25.4	26.5	
7	187.2	189.0	189.0	4	66.8	67.8	
7a	113.5	115.1	115.1	5	67.0	68.1	
8	157.4	158.2	158.2	6	16.6	17.0	
9	138.1	138.7	139.5	Sugar C			
10	133.4	134.1	134.0	1	101.6	102.6	102.6
11	119.7	120.0	119.7	2	46.9	40.7	40.7
11a	129.8	131.9	131.8	3	201.1	72.2	72.2
12	181.6	183.4	182.9	4	78.0	78.3	78.3
12a	138.5	141.1	140.0	5	72.6	73.1	73.1
125	80.2	82.4	77.8*	6	18.8	18.5	18.5

Table 1. 13C chemical shift assignments of kerriamycins A, B and C (ppm)

* interchangeable

is a derivative of 1 possessing olivose in place of kerriose (Fig. 1).

The ¹H and ¹³C NMR spectra of kerriamycin C $(\underline{3})^{4}$ [C₃₇H₄₆O₁₅: FAB-MS, <u>m/z</u> 753 (M+Na)⁺] in CD₃OD revealed that the signals due to sugar B in <u>2</u> disappeared in <u>3</u> with the remaining part unchanged. Thus, kerriamycin C was elucidated to be the 12b-O-derhodinosyl derivative of 2 (Fig. 1).

The 13 C chemical shift assignments $^{4)}$ of these kerriamycins were achieved by 2-D C-H correlation spectral analysis and long range selective proton decoupling experiments. The results are summarized in Table 1.

In order to establish the absolute configuration, kerriamycin B was hydrolyzed with 2N HCl at room temperature for 2 hours to give aquayamycin, rhodinose and olivose. The specific rotations of olivose ($[\alpha]_D^{21} +50^\circ$, c 0.26, H₂0) and 2,4-dinitrophenylhydrazone of rhodinose ($[\alpha]_D^{22} -19^\circ$, c 0.08, pyridine) reveal that these sugars are D-olivose (lit. +31°)⁸ and L-rhodinose (lit. -14.9°)⁵, respectively.

From these experimental results, the structures of kerriamycins A, B and C have been established as shown in Fig. 1.

<u>Acknowledgements</u> We wish to thank Dr. T. Aoyagi, Institute of Microbial Chemistry, for providing us with an authentic sample of aquayamycin. This work was supported in part by a Grant-in-Aid for Developmental Scientific Research from The Ministry of Education, Science and Culture of Japan (No. 59860012).

References and footnotes

- 1) Y. Hayakawa, T. Iwakiri, K. Imamura, H. Seto and N. Otake, J. Antibiotics, in press.
- M. Sezaki, S. Kondo, K. Maeda, H. Umezawa and M. Ohno, Tetrahedron, <u>26</u>, 5171 (1970).
- K. Ohta, E. Mizuta, H. Okazaki and T. Kishi, Chem. Pharm. Bull., <u>32</u>, 4350 (1984).
- 4) ¹H and ¹³C NMR spectra were obtained on a JEOL GX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. Chemical shifts are given in ppm using TMS as internal standard.
- 5) C. L. Stevens, P. Blumbergs and D. L. Wood, J. Am. Chem. Soc., <u>86</u>, 3592 (1964).
- 6) P. Laszlo and J. I. Musher, Bull. Soc. Chim. France, 2558 (1964).
- 7) N. Niccolai, C. Rossi, V. Brizzi and W. A. Gibbons, J. Am. Chem. Soc., <u>106</u>, 5732 (1984).
- Yu. A. Berlin, G. V. Borisova, S. E. Esipov, M. N. Kolosov and V. A. Krivoruchko, Chem. Abst. 71, 50409 (1969).
- 9) The C-H long range couplings observed between C-4a (δ 81.6) and 6-H (δ 6.89) and between C-3 (δ 75.3) and 3-CH₃ (δ 1.24) indicates that the remaining quaternary oxycarbon (δ 80.2) is assignable to C-12b.

(Received in Japan 31 March 1985)